基于微控制器MSP430F149的温箱控制系统
目前,在温箱的控制过程中还存在一些不足之处,比如控制精度低,稳定性比较差等。因此,针对温箱控制过程中出现的问题,需要设计一个高精度的智能化温箱控制系统,实时地对温箱的温度变化、运行状况和功能状态等进行控制。本文在研究温度采集发展现状和趋势的基础上,设计了一种基于微控制器MSP430F149的温箱控制系统。
本系统以单片机MSP430F149为控制核心,采用铂电阻温度传感器,对温度信号进行测量控制,并实现数码管数字显示,可通过按键对温度进行目标温度值的设置,从而使系统能够根据现场情况,自动启动压缩机或者加热丝,对温箱的实际温度实现自动调节。本系统结构简单、经济性好、实时性强。通过实验证明,系统可以达到高精度的温箱温度采集,实时地显示温箱的温度,准确及时地控制整个系统运行,并具有体积小巧、安全、稳定和可靠等特点,有良好的可扩展性。
1、系统结构框图及其工作原理
系统总体框图如图1所示,由温度传感器、信号调理电路、A/D转换器、键盘、LED数码管、MSP430单片机、电热丝、隔离·驱动、可控硅、压缩机12部分组成。本温箱控制系统采用的主要芯片MCU是单片机MSP430F149。主要的器件有:温度传感器铂电阻芯片、压缩机、加热丝和风扇等。
其工作原理是铂电阻采集到温度信号经过信号调理电路送到A\D转换器进行模数转换,得到的数字信号传送到单片机的控制中心进行处理判断,然后由单片机输出控制信号,经过隔离驱动电路控制可控硅,对加热丝或压缩机进行控制。
2、系统单元电路设计
系统的硬件电路主要由温度采集、温度控制和温度显示三大部分构成。本系统的硬件由单片机MSP430F149、电源电路、温度采集电路、温度控制电路、数码管显示电路等构成。
〈1〉电源电路设计
本系统需要使用+5V和+3.3V的直流稳压电源,其中MSP430F149及部分外围电器需要+3.3V电源,其它部分需要+5V电源。在本系统中,以+5V直流电压为输入电压,+3.3V由+5V直接线性降压,其中采用HT7333作为稳压芯片。如图2所示。
〈2〉温度传感器采集电路
PT100温度传感器是一种以铂(Pt)制成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=R0(1+aT),其中a=0.00392,R0为100Ω(在0℃的电阻值),T为摄氏温度。
PT100温度传感器采用四线法的连接方式,有效地消除了引线电阻引起的测量误差,能够精确测量未知电阻上的压降,计算出电阻值。具体连接图如图3所示。
PT100四线法连接电路通常称为Kelvin电路,对于每个测试点都有一条激励线F和一条检测线S,各自构成独立回路,同时要求检测线S必须接到一个有极高输入阻抗的测试回路,使流过检测线S的电流极小,近似为零。图中r表示引线和探针与测试点的接触电阻之和。HF为高电位施加线,LF为低电位施加线,HS为高电位检测线,LS为低电位检测线。由于流过测试回路的电流为零,在r3、r4上的电压降为零,而激励电流I在r1、r2上的压降不响I在被测的铂电阻上的压降,所以可以准确计算出铂电阻的阻值。这样就消除了引线上的电压,实现高精度的温度采集。
单片机MSP430F149的内部具有8路12位精度的模数转换器,带有采样保持功能,通过模数采样读入端口温度电压信号,相应的模数转换公式转化成实际温度数值并存储,然后将温度数值发送到数码管显示出温度。
温度控制
开始的时候设定好温箱的目标温度值。系统开始进行温度采集,通过外接的铂电阻获得。将采集到的温度和目标温度进行比较,当采集的温度低于目标温度的时候,由控制中心单片机输出控制信号,通过对加热丝进行加热,实现加热操作;当采集的温度高于目标温度的时候,由控制中心单片机输出控制信号,通过控制压缩机,实现降温操作;反复对温度进行测量,比较,这样一直持续,以保证温箱温度被控制在恒温状态以下,以此达到温箱温度控制的目的。具体的操作步骤如下:
加热操作
采集的温箱温度与预设的目标温度进行比较,当所测温度低于目标温度的时候,启动加热操作。加热操作的过程为:
选用的是铁铬铝电热合金类型的加热丝,其平均功率是2000W,额定电压为220V,长度为20cm,由于温箱的大小为1m3,经过计算完成整个温箱的加热过程,从-50℃~150℃需要40min,将加热丝外接在温度控制器电路中,单片机MSP430F149通过P1.1发出控制信号,控制可控硅的通断就可实现加热丝的工作状态,只要改变P1.1的接通时间就能实现加热功能。由于加热丝存在热惯性和时间滞后等特性,为了使控制更加精确,比较温度之后的差值大小采用不同宽度的脉冲进行控制,这样来实现加热丝的加热操作。为了避免造成局部温度过高、受热不均匀,以达到平衡加热的效果,在加热丝的侧面并联一个可控风扇,保证加热过程的均匀受热。加热原理图如图5所示。